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CHAPTER  I 

INTRODUCTION 

1-1.   Objectives and Summary. 

This thesis will be essentially devoted to the development of a 

decomposition method for solving large linear programming problems 

arising from N  interconnected linear systems.    These problems,   which 

will be referred to as linear interconnection problems,  can be stated 

a3 follows: 

(1)     Minimize   Z   =   ex  subject to    Ax  =   b,      x _>  0     where the coefficient 

matrix A has a structure of the type 

(2) 

A1 I -I I -I 

1 A2 -I I I -I 

A3 -I I -I I 

We point out immediately that the mulstistage linear problem 

concerned with dynamic situations having a finite number of time periods 

is a particular form of problem  (1),   whose coefficient matrix has the 

staircase structure 

The notations adopted in this repoit are explained in section 
2 of this chapter. 



(3) -I 

12 3 
where the matrices  A  ,    A     and  A    might be identical. 

Linear programs having a coefficient matrix similar to matrix 

(2) might represent,   for instance,  optimization problems arising from 

the cooperation of three economies (or industries) whose production 

functions are assumed to be linear.   In such a case the matrices   A   , 

2 3 
A     and  A    would represent input-output coefficient matrices of econ- 

omies 1,   2 and 3 respectively,  whereas the connection matrices  I   and 

-I would represent importation and exportation matrices.   The objective 

function,   in this case,   could be thought of as a common social welfare 

function [32,   p.   47] which has to be optimized. 

In this report we first develop two decomposition methods for 

solving the special class of linear interconnection problems for which 

1      2 3 
the above matrices  A   , A     and  A    are Leontief matrices.   Although 

the solution methods for this type of problem might have a wide range 

of application -- notably to the study of Leontief economic models and 

sequential decision problems [16] -- it is not the practical usefulness 

of these models which motivated their extensive development in this 

report, but rather the fact that, as far as mathematical programming 

is concerned, they have an ideal behavior which gives us valuable in- 

sight into more complex problems. 



In chapter II we introduce the simplest decomposition approach 

which one might conjecture would work,  i. e. ,  a method based on com- 

munication of prices only.   We refer to this method as a price-com- 

munication decomposition method.    In chapter III, which is the core of 

this study,  we develop a decomposition method for solving linear pro- 

gramming problems of type (2) for interconnected Leontief systems. 

This method,   which is called decomposition method by square-block 

triangularization,   is extended in chapter IV to general interconnected 

matrices.    The essential ideas underlying this decomposition method 

are the following. 

Given a basic feasible solution to a linear program of type (1) 

we shall transform this problem into an equivalent linear program which 

will have a feasible basis in the following square block triangular form 

B1 E1 E2 

0 B2 E3 

0 0 B3 

B 

1        2 3 
where the submatrices   B  ,    B     and   B    are square matrices.   Next, 

we shall see that we can find an improved solution of this equivalent 

problem by solving,  via the simplex method,   a smaller subproblem 

called the improvement subprogram.   If this improved solution is not 

optimal,   we set up another equivalent problem which,   in its turn,   will 

lead to another improvement subprogram,   and so oh,   until optimality 

is reached. 



The main features of the two decomposition procedures just 

mentioned are the following: 

(a) All the coefficient matrices of the improvement subprograms 

have the following structure: 

A1 T1 .... 
T" 

where 

A    is the submatrix of A corresponding to the i     system; 

T    (for j ^ i only) is a modified exchange matrix of the form 

0    _ i    + e- 
m 

1 

1 
X  .    . ..XXX 

x X  .   .X 

Where I      is the identity matrix of order m. 
m 

(b)  The exchange of information which is required between the 

subprograms consists of 

(i)   the simplex multipliers only for the price communication 

decomposition algorithm of chapter II; 

(ii)   the simplex multipliers and the matrices  8    for the square- 

block triangularization decomposition algorithm when ap- 

plied to Leontief systems; 

.   !   ' **** 



(iii)   the simplex multipliers,   the matrices  9    plus some ad- 

ditional information related to the feasibility of the solu- 

tions when applied to general systems. 

Remark.    At this point it should be mentioned that when the decomposi- 

tion principle of Dantzig rnd Wolfe  [9, ch. 23],   [14]   and [15]  is applied 

to solve problem (1),   its master program behaves to some extent like 

an improvement subprogram of the square block triangularization de- 

composition method,  whereas its subproblems are rather similar to 

those obtained by the price communication decrmposition method. 

(c) The decomposition procedures considered in this report are 

symmetric in the sense that 

(i)   all subprograms have the same structure; 

(ii)   the exchange of information between the subprograms is the 

same in all directions. 

This feature might be of importance when a horizontal decentralization 

of the decision making process becomes necessary.    By this we mean 

that no hierarchy exists between the interconnected systems.   For in- 

stance,   problems concerning the cooperation of several independent 

economies would certainly require this type of decentralization. 

(d) The decomposition methods are always primal feasible. 

By this we mean that,   at any stage of the decomposition,   basic feasible 

solutions to the original problem as well as the subproblerns are known. 

' 



* * * 

The idea of taking advantage of the square block triangularity 

of the bases is,   of course,   not new.   In particular,   Dantzig [ll] has 

applied it to solve dynamic Leontief systems with substitution,   and has 

even suggested an interesting decomposition method for solving multi- 

stage problems which is based on artificial square block triangular 

bases,   [10]  and [12].   However,  the computations required by this 

last method appeared quite complex,   and it seems that it has not at- 

tracted much attention,   especially since the discovery of the decomposi- 

tion principle of Dantzig and Wolfe which promised much more elegant 

solutions for these multistage problems. 

Then,   in recent years,   came the development of methods which 

are basically variants of the simplex method adapted to special struc- 

tures of large scale linear programming problems.   All these methods 

take advantage of the observation that "the inverse of the basis in the 

simplex method serves no function except as a means for obtaining the 

representation of the vector entering the basis and for determining the 

new price vector" [13,   p. 1 ] .   Among these methods we mention for 

their approach the primal partitioning programming procedure,   Rosen 

[34]; the pseudo-basic variable procedue,   Beale [6]; the compact basis 

triangularization method,   Dantzig [13]; and very recently,  the dualplex 

method,   Gass [23]. 



We must also mention that Abadie [3]  has shown that,   under 

certain conditions,   if the decomposition method of Dantzig and Wolfe 

is specialized to obtain basic solutions at each iteration,   then it be- 

comes nothing else than a variant of the »implex method for which the 

inverse of the current basis is computed by partitioning.   We believe 

that this observation is important because it indicates that,   provided 

an adequate exchange of information takes place,  the primal simplex 

method lends itself to decentralized computations.   Since there is no 

good reason to think that the simplex method which has proved to be 

very efficient for the solution of small linear programs will not be as 

well adapted to the solution of large ones,   it seems that efficient de- 

composition methods for solving the latter might well be sought within 

the framework of the simplex method. 

To conclude these remarks we observe that the main factors 

which have to be considered in the choice of a decomposition procedure 

are 

(a) the structure of the basis; 

(b) the partitioning imposed (if any) by the necessity of de- 

centralization; 

(d)  the type of exchange of information between the subprograms 

which is desirable. 



1-2.   Terminology and Notations. 

In this report we shall adhere most of the time to the standard 

terminology in mathematical programming,   for which we refer tc [9], 

[21 ],   [22],   and [26],   and for the rest we shall define the technical 

terms and symbols as they are introduced.    Therefore,   only a few no- 

tational remarks are in order here. 

We first give a list of the principal notations used in this re- 

port to best illustrate the conventions we have adopted. 

A,B,C,D,E,H,P,Q,R,S,T denote exclusively matrices. 

|A|     denotes the determinant of the square matrix  A. 

A. .     denotes the j      column vector of the matrix A. 
J 

A. = A. .   if no confusion is possible. 
J J 

f Vi 
A..      denotes the i     row vector of the matrix  A. 

1 

A denotes the submatrix of the (m X n) matrix  A whose 

columns are  (A.).     _ where  J^>   N  =  {l,2,...,n}. 

Ay      denotes the set of columns of  A which are not in  A 

a, \,   T,   ^,  v     normally denote    scalars. 

b, c,   d,   x,   t,   w,   y denote vectors.    Note that no distinction is 

made between row and column vectors. 

b. denotes the vector whose components are (b),   i € J_ 
J i 

B normally denotes a feasible basis of a linear program 

ß always denotes the inverse of the matrix   B. 



e -   (1, 1, . . . , 1)  denotes the m-comporu'nt vector all of 
m 

whose components are one. 

u. =   (0, . . . 0,   1,   0. . .0)  denotes  the i      unit vector whose 
i 

i      coordinate is one and whose other coordinates arc- 

zero. 

I denotes the identity matrix of order m . 
m 

I ,   J ,   K     denote    sets of positive integers (indices). 

M =   { 1 , 2, . . . m}   denotes the set of positive integers from 

1  to m   . 

N. =   { 1, 2, . . . n. }  denotes the set of positive   integers from 

I to n. 
i 

? denotes the empty set 

ir always denotes the price vector ( simplex multipliers) 

associated with a basis   B, 

Y always denotes the cost vector associated with a basis   B 

By definition we have  TT   B  =  y 

w always denotes a vector of basic variables associated 

with a basis   B.    By definition   Bw   =   b# 

J =   {i/x .   is a basic variable}   denotes the set of basic ac- 
"      J 

tivities;   therefore,    w   =  x T  . 

Z always represents the value of the objective function. 



Unless otherwise specified,   these notations will be consistently 

used,   and often without further explanation. 

It remains to indicate briefly how the indices will be used     For 

an iterative process we will adjoin an argument  t  to any quantity which 

might vary.    Thus,   the basis   B  of a linear program at the   t       iter- 

ation will be denoted by  B(t),   the simplex multipliers by  tr (t) and the 

values of the basic solutions by   w(t).    The next feature which requires 

distinctive notations is the decomposition of a linear program into 

t Vi 
smaller subprograms.   In this case,   all quantities relative to the i 

subprogram will have a superscript   i,   e. g.    B (t),   TT  (t),   w (t) which 

t Vi 
are not to be confused either with the i      column of B(t),   i. c. ,   B.(t), 

i 

or with the i      components of  TT (t)   and   w(t)   |TT.(t)   and  w.(t)|   . 

Finally,   a word about our numbering system.    Theorems,   def- 

initions,   remarks as well as equations are all numbered consecutively 

within each chapter.    A reference to an equation outside a given chap- 

ter will be made by prefixing the chapter number to the equation num- 

ber.    The numbers in square brackets  refer to books and papers listed 

in the bibliography at the end of this  report. 
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CHAPTER  II 

OPTIMIZATION BY PRICE COMMUNICATION 

BETWEEN LEONTIEF SYSTEMS1 

2- 1 .   Introduction. 

In this chapter we shall be concerned with large linear pro- 

gramming problems based on interconnected Leontief systems whose 

activity levels are unbounded and whose coefficient matrices have a 

form similar to 

1 -' 1 I I -I !     -I      .              : 

A2 
-I I I   i       ! -i 

A3 -I -ijl. I 

where  A  ,    A     and   A     are Leontief matrices with substitution whose 

precise definition will be given in the next section 

We shall determine some important properties of this class of 

problems by concentrating,   in the following sections,   on a decomposi- 

tion procedure based exclusively on price communication between the 

Leontief systems.    It should be noted that this    decomposition procedure 

has only a limited practical interest for the following reasons: 

Basically,   the ideas developed in this chapter were suggested 
by Prof.  G   B.  Dantzig during a seminar on Computational Methods in 
Mathematical Programming which was given during the fall semester 
1962 at the University of California,   Berkeley. 
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(i)   we prove only that an optimal basis to the original problem 

can be found in a finite number of iterations; 

(ii)   no optimality criterion is given; 

(iii)   a better convergence to the optimal basis can be achieved 

by another method described in chapter 3. 

Nevertheless,   as will be illustrated in chapter 3    we remark that for 

the first iterations the above method could give good results and,   there- 

fore,   might be efficiently used to find an improved initial basis to a 

more complex decomposition approach.   Also,   it might be advantageous 

to use the price communication decomposition algorithm in certain 

cases where only near-optimal solutions are desired.    However,   the 

main point of this chapter is not to present a working algorithm,   but 

to demonstrate that,   under certain ideal conditions,   the price com- 

munication technique alone can lead to the selection of an optimal basis. 

For convenience in exposition,   we summarize in the next  sec - 

lion some properties of the Leontief systems which will be used through 

out this  report.    In section 3 we describe the price communication de- 

composition procedure for two interconnected Leontief systems and 

prove some properties justifying its validity.    The questions of con- 

vergence and finiteness of the method will be dealt with in section 4 

Finally,   in the  last section we briefly indicate how to extend the pro- 

cedure to the case of  N   Leontief systems. 



1 3 

2 -2.    Review of Some Properties of Leontiet Systems. 

We shall now,   for future reference,   briefly review some of 

the  important properties of Leontief systems.    Most of the general 

properties of Leontief matrices can be found  in an expository paper 

by Woodbury [37],   but we shall mostly refer to Dantzig and Wets [17] 

and Gale [ 21] . 

(1)   Definition.    An (m X  n) matrix  (m > n)   is called a Leontief m atr ix 

with substitution if and only if each column contains exactly one and 

each row at least one element which is positive. 

It should be noted that a coefficient matrix of a linear program 

which is a Leontief matrix with substitution as defined by (I) can al- 

ways be transformed by scaling the variables  into a Leontief matrix 

whose positive elements are all equal to one,   i. e. ,   into a matrix of 

the form- 

(21 
21 

. 1 -a 

•a2k 

1, k + l 
1 

le 

l2e 

■a    . -a -a      .    , 
ml mk m, k + l 

-a. 
In 

-a. 
2n 

all 
a    >0 

i ■ — 

Normally,   it is this form which will be used in this report.    In 

the same way we define a simple Leontief matrix. 

(3)   Definition.    A matrix   B   is cahod a Leontief matrix if it is a square 

Leontief matrix with substitution,   i. e. ,   if each row has one and only 

one element which is positive. 
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If a Leontief matrix of order  m   has the property that the sum 

t the elements of every column is strictly positive,   then the follow- 

ing theorem holds. 

(4) Theorem.   If  A  is a Leontief matrix of   order  m   and satisfies the 

condition   e    A > 0,   then the inverse of A  exists and is a nonnegative 
m 

matrix,   where   e      =  (1,   1,   .   .   ,   1) or,   more generally,    e       -   (w, , 
m ml 

w_ ,   .   .   ,   w    )  where  w. > 0. 
2 m i 

It will suffice to show the theorem for e       =   (1, I,   .   .   ,   1) 
m 

since the  rows may be rescaled so that w.  -  1  and then the columns 
i 

rescaled so that a.. =  1  for all i.    There exist several ways of proving 

this theorem.   Usually the proof is based on the convergence of I   ^ 

A   +   A      +   .    .    .   where   A   is a nonnegative matrix defined by  A 

I - A   and   A     -♦ 0   as   n —«       [21,   p    301 ] .    A different proof,   based 

exclusively on the properties of the simplex method,   hence algebraic, 

is given in [l 7] .    | j 

Considering now the linear program 

(5) Minimize   Z   =   ex   subject to Ax = b  and x > 0   where   A   is a Leontief 

matrix with substitution,   we state the following well known results, 

detailed proofs of which can be found in [17] 

(6) Lemma.    If  b   is positive   (b > 0),   then any feasible basis to prob- 

lem (5) is a Leontief matrix. 

Proof.   It suffices to note that the feasibility requires at least 

one positi/e element in each row when   b  >   0.    || 
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Remark.    A stronger form of the same lemma -- namely,   that 

any basis to problem (S) to which corresponds a feasible nondegenerate 

solution is a Leontief matrix -- can be proved in a similar manner. 

(7) Theorem.   If e    A > 0  then there exists a feasible solution to prob- 
  m 

lern (5) for any  b > 0. 

Proof.   If  e    A > 0,   then any Leontief submatrix   B  of A  has, 
  m 

according to (4),   a nonnegative inverse.    This implies that the basic 

set of i.^tivities defined by  w = B     b  is feasible for any b >  0. || 

(8) Theorem.   If   B   is a feasible basis to problem (5) for a positive 

b,  then it is a feasible basis for any nonnegative  b. 

The proof of this theorem rests on the fact that if   B  is a feasible 

basis corresponding to b > 0,    then   B        is a nonnegative matrix; there- 

fore,   the same argument as above holds.    The complete proof may be 

found in [17,   p.   21] . || 

(9) Theorem.    (Samuelson)   If   B   is an optimal basis to problem (5) 

for a positive     b,    then  B  is an optimal basis for any nonnegative  b. 

Proof.    The simplex multipliers   TT   associated with   B  are in- 

dependent of  b  and satisfy the dual constraints 

(a)   TT  A <   c 

because   B   is an optimal basis.    But,   according to (8),   B is also a 

feasible basis for any b >  0; hence,   the vector   ir   is the same,   the 

relation (a) still holds and the conclusion of the theorem follows. 

* 
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(10) Remark.      At this point it should be emphasized that theorem 

(9)  is not equivalent to the statement that the optimal selection of al- 

ternative activities is independent of the right hand side  b,    as the fol- 

lowing counter-example will show. 

(11) Counter-example.      Consider problem (5) with the data 

1      1     0 
0-. 5     1 

and c     =     [1,2,4] 

It can be easily checked that 

(a)  if b  =   [1, 0]     then  B' fl      1 
[0-. 5 is an optimal basis 

(b)   if b  =   [1,1]   then  B'   is not a feasible basis and the 

optimal basis is   B 
1     0 
0     1 

C r 
(c)   B     is also optimal when  b   =   [1,0] 

This remark is not really restrictive when the coefficient matrix 

A   satisfies the condition e    A  >  0 ,    because we know,   by (7),   that 
m 

there exists a feasible solution for any  b >^ 0 .    Hence,   in this case 

when an optimal solution for any  b ^ 0   is desired,   it suffices to ap- 

ply the following rule. 

(12)  Rule.      If problem (5)  satisfies the condition e    A >  0 ,   then by 
  r m ' 

solving it with an arbitrary b >  0 ,   an optimal basis with the follow- 

ing two properties if found: 

(i)   it is a Leontief matrix (theorem 6) 

(li)  it is also an optimal basis for any  b > 0 (theorem 9). 
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Z- 3.    Decomposition Procedure for Two Interconnected Leontief 

Systems. 

We now present the decomposition procedure by price communi- 

cation to solve a linear program of the form 

Minimize   Z   subject to the constraints 

x^0'    y>0'    y>0>    x>o 

A1   !       T      1       T       2 K1 
Ax-fly-Iy =b 

m m 

r      !       T      2        A2 2 u2 
-ly    +Iy     +Ax      -    b 

m m7 

11 11 2  2 2  2 2 2 
ex     +dy     +dy     +cy    +cy       =     Z  (min) 

1 2 
where  A     and  A     are Leontief matrices with substitution of size 

(m  x   n  )  and  (m  X  n  )   respectively,   and I     is an identity matrix 
1 £■ ill 

of order  m. 

We make the following assumptions which will be used in later 

developments: 

(14) e    A1   >   0 for     i   -   1, 2 
m 

(15) c1   > 0,     c2 > 0,      d1   > 0,     d2 > 0 

(16) d1   + d2   >   0 

We shall relate the solution of problem (13)  to the solutions 

of the following sequence of subproblems. 
. 
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Minimize   Z     satisfying 

(17) a(t) / 

1        ^ 1       rt x    > o,      y    > o 

A  x     +  I   y       =     b 
m 

1   !        tJ 2,      ,,,   1 „1   ,        v 
ex     +  [d     +  TT   (t-l)]y      =    Z     (mm) 

\ 

*1 2 
where  b     is an arbitrary positive vector and  IT  (t-1)  are the com- 

municated o£tirnal simplex multipliers from subproblem b(t-l)  below. 

(18) b(t) ) 

I 2 
Minimize  Z     satisfying 

2 2 
x    > 0 ,       y    > 0 

A  x     +  I    y       =     b 
m 

2   l       \J- i/.n   2 ^2 /        v ex     +   [d    +  TT (t)]y       =     Z    (mm) 

-2 1 
where   b    is an arbitrary positive vector and  TT  (t) are the communi- 

cated optimal prices from subproblem  a(t). 

All these problems are well defined except subproblem  a( 1) 

Z 
for which  TT (0)   is not specified. In fact,   instead of a(l),   we choose 

to solve the problem 

w ^1 11 L- Al       1 ,1 .1 Mm  Z     -ex       subject to     Ax     =   b       and     x     >  0 

This can be achieved by setting  TT (0)   =   «   and solving  a( 1)  as stated 

above. 

We turn now to some of the properties of subproblems  a(t) 

and   b(t).   Our first task is to show that their optimal simplex multipliers 
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1 2 
TT  (t)  and  TT  (t)   converge as   t  increases. 

(19)     Lemma.      Under assumptions (14) and (15),   IT  (t) >   0   and 

TT2(t)  >  0. 

Proof.      Note that (14)  guarantees that feasible solutions to 

a(t) and  b(t) exist (see 7) and that,   by assumption (15),    Z     > 0  for 

problem  a( 1).    Hence,   by the duality theorem,   an optimal solution to 

a( 1)  exists.    Also,   according to   (12),   we know that an optimal basis 

to  a(l),   say   B (1),   is a Leontief matrix whose inverse is a nonnegative 

matrix.    Consequently,   since the basic cost vector  v  (U  i* nonnegative, 

the simplex multipliers  IT (1) are also nonnegative,   i. e. , 

Tr1(l)   =    VNDIBV)]"
1
   >  0 

and,   repeating the above argument for  b(2),   a(3)    the conclusion 

follows. I I 

1 2 
(20)     Lemma.      TT (t)  and TT  (t)  are monotonically nonincreasing se- 

quences. 

Proof.      Because the set of activities of a(l)  is a subset of the 

activities of  a(2)   it is obvious that 

zV)     >     2^2) 

Furthermore,   since  B     is an optimal basis for any b > 0 ,   we may 

choose   b  -   u.,   a unit vector with 1 in i     component; we then have 

i - 
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by the duality theorem   Z  (1)   =   TT.(1)   and   Z  (2)   =   IT. (2)   and this for 

all  i t   M     Hence, 

Al)     >     Tr1(2) 

But this implies that the cost vector of  b( 1)  is greater than or equal 

2 2 
to the cost vector of b{2); hence,    Z  (1)  >   Z  (2)   and by the same 

argument as above 

TT2(1) IT2(2) 

Similarly,   assuming that  TT (t - 1) >  IT (t) we show that 

TT2(t-l)        >        TT2(t) 

thus completing the inductive proof of this lemma. |] 

1 2 1 
(21) Theorem.      TT  (t)  and  TT  (t)  converge respectively to  TT     and 

I 
TT_,   as t-*   «5. 

Proof.      By t'19) and  (20)   both sequences are nonincreasmg 

and bounded below by zero     So,   they  both converge. | | 

We now turn to some definitions which will be used throughout 

this report, 

(22) Definition.      We call respectively importation set of the i1" 

block and production set of the i1" block the sets 



21 

I     -    (j/j t   M     and     y.     is a basic variable} 

J     =    (j/j t   N.    and     x.     is a basic variable} 
1 J 

Accordingly we denote the vector of basic production variables 

by 

x      =    (x ) 
J J J  <   J 

and the vector of basic importation variables by 

yi = '^'j. i 

Concerning these sets it will be useful to record that 

(23)     Lemma.      Optimal solutions of two consecutive subproblems 

a(t)  and  b(t)  have the property that 

i1,^ i2 
V 

Proof.    By definition 

TTV)  =   d1  +  Tr2(t-1) 
J J J 

if       jc   I 

and 

2 2        1 
TT     (t)  =   d    +ir.   (t) 

J J J 

if      j c  I 

Adding these relations we have 
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TT2(t)   -  TT2(t - 1)    =   d1  + d2 > 0       (by 16) 
J J J J 

which contradicts (2Ü).    This completes the proof. || 

Let us now examine how the solutions of subproblems  a(t)   and 

b(t)   are related to the solution of the original problem.    First we 

show that the niatrix   B( t)   of this problem whose columns correspond 

to optimal bases   B   (t)   and   B   (t)   of a(t)   and  b(t)   is a feasible basis 

for problem (13).   It will be convenient to partition   B(t)   as follows: 

(24) B(t) 

BV)       E2(t) 

E^t)       B2(t) 

1 2 where we assume that the optimal bases   B  (t)   and   B   ( t)   have their 

positive elements on the diagonal and the columns of E   (t)   and E   (t) 

are defined by 

25) 

EJV) u if      J e  I  , K  =   1. 2 

-    0  otherwise 

Remark.      It should be observed that the assumption that the 

1 2 positive elements of   B (t)   and   B   (t)   are on the diagonals does not 

restrict the generality of this exposition since the simplex algorithm 

applied to Leontief systems preserves this characteristic; consequently, 

it suffices to put the original bases in the proper order. 

(26)      Lemma.      B(t)   is a feasible basis for problem (13). 

Proof.      Let us suppose that   B(t)   is a nonsingular matrix and 

let us compute its inverse   ß(ty   by the partitioning method  [26,  p. 35] . 
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2 2 Denoting by  ß     the nonnegative inverse of   B   (t)   (which,   according 

to (4)   and   (6)   exists)   we have: 

ß(t) 

V1       62 

[61       F2 

where 

ß1 [B^t)   -  E2(t) ßVit)]'1 

--ßlEZ(t)ßZ 

2    1       — 1 

ß2   -  ß2E1(t)62 

1 -     2 Under the assumption  I I    =   qp we prove in chapter 3  that the 

matrix 

B1      -     B^t)   -  E2(t) ß2E1(t) 

is a Leontief matrix satisfying e    B     >   0.   Hence,   by (4)   its inverse 

B     exists and is a nonnegative matrix.   As can be easily verified, 

this implies that the remaining matrix equations of (26)  are all de- 

fined and are nonnegative.   Hence,   ß(t)   is a nonnegative matri;: and 

therefore   B(t)   is a feasible basis for any nonnegative right hand side 

b.    This completes the proof. j| 

Thus far we have only seen that the simplex multipliers  TT   (t) 

and TT   (t)   converge and that our decomposition procedure gives us a 

sequence of feasible bases   B(t).    To prove the validity of the whole 

method it remains to be shown that the sequence   {B(t)} will converge 

in a finite number of steps to an optimal basis of problem   (13).    This 

is done in the next section. 
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2-4.    Convergence and Fimteness Proofs. 

Let us turn now to the questions of convergence and finiteness 

of our decomposition procedure.   We shall first note that,   if for any 

two consecutive iterations the simplex multipliers are equal,   then the 

iterative process is ended.    More precisely 

(28)       Lemma.      If ^(t-l)    =  -n1 (t)   or  ir   (t-1)   =   vZ{t)   then the 

basis   B( t)   is an optimal basis for problem (13). 

Proof.      Pricing out the activities of problem (13)   with the 

simplex multipliers  TT   (t)   and IT   (t)   we have 

c1   -   7T1(t)A1     >     0 

(29) c2   -   •tT2(t)A2    >     0 

d2   +   TT^t)    -   iT2(t)       2      0 

as a direct consequence of the definitions of TT   (t)   and TT   (t).    How- 

ever,   nothing can be said about the siffi of the expression 

(30) d1     +    TT2(t)     -    TT^t) 

since the equivalent columns in the pre blem  a(t)   price out 

(31) d1   +  TT2(t-l)   -  irl(t)     >     0 

2 2 
Nevertheless,   when  TT   (t)    -   IT   (t-1)   then   (30)   is identical to   (31) 

11 2 2 Hence,   noting that TT   (t-1)   =   TT   (t)   implies that TT    (t-1)   =  TT   (t), 

the conclusion of the lemma follows, 
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1 2 ( 32)     Theorem.      The limiting simplex multipliers it     and  7T,,t   are 

optimal simplex multipliers to problem (13). 

Proof.      It suffices to note that in the proof of the preceding 

lemma 

(i)   the relations (29)  must hold in the limit also; 

(ii)   the expression (30)  is asymptotically greater than or 

2 2 
equal to zero since TT   (t-1)   -   -n   (t)  -* 0 as  t -* <*>.   || 

So far we can conclude that,   since  TT   (t)   and IT   (t)   converge 

to  TT^ and TI   ,   the decomposition procedure by price communication 

tends to give an optimal feasible basis for problem (13).   In fact we 

shall show now that the choice of this optimal basis is reached in a 

finite number of iterations. 

(33)     Theorem.      An optimal basis   B( t)   to problem (13)   is reached 

in a finite number of iterations. 

Proof.      Let [x   (t),  y  (t),  y (t),  3f^(t)]   be the basic feasible 

solution to problem   (13)   which is associated with the basis   B( t).    By 

multiplying the rows of the coefficient matrix (13)   by TT   (t)   and 

2 
TT   (Ü   and subtracting them from the cost form,   it can be easily ver- 

ified that the objective function Z(t)   of  (13)   has the value 

Z(t)    =   TT1(t)b1   +  Tr2(t)b2 +  [TTV;    -   TT2(t-l)] y^d). 

2 2 
According to (20),   TT    (t)   - TT   (t-1)   <  0;   therefore 

Z(t)    <  TT1(t)b1   + TT2(t)b2 

Furthermore,  also by (20),  we know that there exists for a given 

a  >   0 an integer  N   such that 
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TT1(t)b1    <   TT^b1     +    Q/2 

for all t > N 
2 2 2    2 

TT     (t)b^   <    TT^b^    +    Q/2 

Hence,   oy theorem   (32)   we have 

Z(t)   <  Z min + a for all  t >  N 

Now,   let us suppose that   B    is a nonoptional basis   of problem (13) 

The corresponding value of the objective function,   «ay  Z   ,   can be 

written as 

Z0   =   Z min +  h (h >   0) 

Therefore,   if a <   h,   we have 

Z(t)  <   Z0 for all     t > N 

This means that,   if  t  is sufficiently large,   the nonoptional basis   B 

cannot be chosen by our procedure.    This holds for all nonoptimal 

bases and therefore the conclusion of this theorem follows. 

2-5.   Extension to   N  Interconnected Leontief Systems. 

The preceding analysis can be readily extended to the case of 

N  interconnected Leontief systems because it can be easily shown 

that all the results of the previous analysis hold in this case also.    To 

illustrate the procedure applied to such a case we consider the follow- 

ing linear program stated in detached coefficient form: 

Minimize   Z   subject to 
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(34) 

1 
X 

2 
X 

3 
X 

12 
v 

13 
v 

21 
V 

23 
Y 

31 
V 

32 
v Constants 

A1 T 
X 1 -I -I -I bl > 0 

A2 -I I I bZ > 0 

A3 -I -I I I b3 > 0 

C1 c2 
C3 d12 d13 d41 d^ d11 d" Z (min) 

Where all identity matrices  I are of order  m. 

In this case,   the subproblems to be solved are 

(35) 

a(t)    ,' 

Minimize   Z     satisfying 

x1    -   0,       y12   >   0.      y13   >   0 

1 A   ;■     +   I    y       +   I    y =      b 
m7 m7 

V   +   [d12 + Tr2(t-l)]y12 +  [d13 + iT3(t-l)]y13     =     Z^min) 

Minimize   Z     satisfying 

2 
y >   0,       y >   0 

b(t) 
A2     2      .      T 21 T 23 C2 
Ax+Iy      +Iy =b 

m7 m7 

V 
2  2       \ ^1   (     l.t,i    21   ,   r,23 3^  14l   23 ..2 .    .   . x     +  [d       + -rr   (t)Jy       -♦■  I d       + IT   (t-l)Jy =     Z    (mm) 

' Minimize   Z     satisfying 

x     >   0, 
31   >  n 32   >  n y £   0 

(.) 
A3   3       .      31       .      32 ri 
Ax+Iy      +Iy =b 

m7 m7 

3   3   t   rJ31 K.i    31       r ,32   .     2^,1    32 x     -t-  Ld       +  TT   (t)Jy       +  [d       + IT   (t)Jy 
\ 

Z    (min) 
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- 1 -.9 ""3 I 
where  b   ,    b   ,    and  b    are arbitrary positive vectors,   and TT   (t), 

2 3 
TT   (t)   and TT   (t)   are optimal simplex multipliers to the subproblems 

ait),   b(t)   and   c(t)   respectively. 

It should be noted that the above subproblems can be further 

simplified by introducing importation cost vectors  d   (t)   defined,   for 

instance for k   = 1,   by 

d^t)    =   min f d12 + TT2(t-l),  d13 +  TT3(t-l) )      for all      jeM 
J V     J J j J ' 

With this simplification subproblem  a(t)   becomes 

(36) a^t) 

Minimize   Z     subject to 

x1   >  0, y1   >   0 

A1   !       T   ! t1 
A  x     +   ly       =    b 

c x    + a y     =   Z    (mm) 

Thus, the subproblems have the same form as those described in the 

preceding sections, with the exception that a kind of indicator vector 

has to be set up to determine the origin of every importation vector. 

■■  i ■ 
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CHAPTER III 

DECOMPOSITION OF TWO INTERCONNECTED LEONTIEF 

SYSTEMS BY SQUARE BLOCK TRIANGULARIZATION 

3-1 .   Introduction. 

From now on this report will be essentially devoted to the de- 

velopment of a decomposition procedure which will be called decomposi - 

tion by square block triangularization.    The underlying idea of this method 

is to transform successively the linear program to be solved into a 

series of equivalent linear programs which have the property that rheir 

current feasible bases are square block triangular,   i   e. ,  have the 

form 

B1 E1     1    E2 

0 B2    1    E3 

0 0            B3 

1        2 3 
where   B   ,   B    and B    are square matrices.    Under these conditions, 

we shall see that improved solutions to these equivalent problems can 

be easily found by solving smaller subproblems which will be referred 

to as improvement subprograms.    Thus,   we shall see that,   starting 

with a feasible basis,   we can,   through a sequence of improvements, 

solve the original problem by solving a series of smaller linear pro- 
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grams.    We mention immediately that in practice the equivalent prob- 

lems are never set up; they serve only for convenience of exposition. 

As far as the improvement subprograms are concerned,   their coef- 

ficient matrix is not constant,   and,   therefore,   they will have to be set 

up at each iteration.   However,   it turns out that for the case of inter- 

connected systems they are easily obtained by a slight modification of 

the exchange matrices. 

In this chapter we shall start the study of the decomposition 

method by square block triangularization by developing it in connection 

with the problem studied in the preceding chapter.    There are two main 

reasons for doing this: 

(i)  we finish the study started in the preceding chapter; 

(ii)  the method has remarkable properties in this case which 

will simplify the exposition and illustrate once more the 

ideal behavior of Leontief systems.    This illustration is im- 

portant because it will show very clearly what is the min- 

imum exchange of information which will be required to 

solve efficiently by decomposition a linear program based 

on interconnected systems. 

Consequently,   we shall again be essentially concerned with 

linear programming problems of the form 
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1) 

Minimize        Z   =    cx     +dy     +ay     +cx 

112 2 
subject to x    £   0,      y    £   0,      y    £   0.      x    >   0 

A1   !        T       !        T      2 u1 
Ax+Iy-Iy =b 

m m 
i 

V T ! T 2 A2      2 U2 v -Iy+Iy+Ax=b 
m m 

where  A     and  A     are Leontief matrices with substitution,   and,  as 

before,   we shall make the following assumptions. 

(2) e    A1 >   0 and e    A2  > 0 
m m 

(3) c1  ^0,      c2   ^ 0.     d1  ^   0,      d2  i 0 

(4) d1   +  d2  >  0 

Remarks.      (i)   It should be noted that assumption (4)   is a necessary 

condiiior. for the existence of an optimal solution to problem (I),  where- 

as the assumptions (2) and (3) are only sufficient conditions made here 

for the convenience of exposition. 

(ii)   We recall (2-12) that problem (1) can best be solved by 

1 2 
taking arbitrary positive right hand sides  b    and b    because the op- 

timal basis obtained with these values is optimal for any b    >   0  and 

2 
any b     -  0.   Accordingly,  without loss of generality,  we shall assume 

1 2 
throughout this chapter that  b   >   0  and b    >  0 (except in the state- 

l 2 
ment of the algorithm where we replace b    and  b    by e      for pre- 

cisely the reason indicated above). 

In fact,   it can be shown that (3) is superfluous. 
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In this chapter we first give some additional propert.es of 

Leontief matrices in relation to square block triangularity in section 

2.    In section 3 we list,   for future reference,   a series of simple re- 

sults related to the transformations of the original problem into equiv- 

alent problems; also we discuss the computational aspects of such 

transformations.    In section 4 the validity of the decomposition method 

by square block triangularization to solve problem (1) will be proved, 

and in section 5 the corresponding algorithm will be stated.    Finally, 

in section 6 we briefly compare this method with that of the preceding 

chapter as well as with tne decomposition method of Dantzig am1 Wolfe. 

3-2.   Square Block Triangularity and Leontief Matrices. 

In this section we prove some further  properties of Leontief 

matrices which will be needed for the decomposition procedure described 

in this chapter.    However,   since these properties have an interest of 

their own,   we shall treat this section rather independently,   referring 

only to the theorems of section (2-2), duplicating a few minor results 

of the preceding chapter. 

We consider a square Leontief matrix of order m   partitioned 

as 

(5) A    - 
A2       A4 

1 4 
where   A     and  A     are square Leontief matrices of order   p  and  q 
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2 3 
respectively and,   consequently,   A     and  A    are nonpositive matrices. 

Let us turn our attention first to the steps which are necessary 

to transform the above matrix A   into a square block triangular matrix 

(6)   Definition.    The matrix X is said to be block triangular if it has 

the form 

X   =   PA   = 
A1        X2 

o    r 

and it is said to be square block triangular if X    and A     are square 

matrices, 

Assuming that submatrix A     is nonsingular and denoting its 

inverse by a'   we define a nonsingular transformation matrix P  by 

(7) 
0 

-A   a'       I 

Premultiplying  A  by  P we obtain the square block triangular matrix 

(8) X  = 
A1        A31 

^) 

w here 

(9) Ä4   =   A4   -   AVA3 



34 

We shall see now that this transformatior preserves the 

4 
Leonlief properties of matrix A   .   More precisely 

(10)  Theorem.      If the matrix A   has the property that  e    A >   0,   then 
          m  

 4 ™ ~ - ^ 
A     is a Leontief matrix having also the property that e X     >   0, 

Proof.      The assumption  e    A   > 0   can also be written as 
  r m 

(i)       e  A1 +  e  A2 >   0 
p q 

(ID 3 4 
(ii)       e  A +  e  A     > 0 

p q 

Noting that   e  A    >   0  we know by theorem (2-4) that the inverse   a1   of 

A     exists and is a nonnegative matrix.    Hence,  the transformation 

_ -4 
matrix  P  as well as the matrix A  exist and A    is well defined.    By 

— 4 
definition of A     we have 

eA      =eA     -eAaA 
q q q 

4 3 
But,   by assumption (ii),   e A     >  - e A   ;   therefore, 

q p 

(12) e  A4 >   - (e     +  e  A2
Q

1
)A

3 

q P        P 

3 
By definition A     is a nonpositive matrix; therefore,   in order to prove 

that 

(iii)        e  A4   >  0 
q 

holds,   it suffices to verify that 

fTF 
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(13) 
»2  1        ,     Al A2V  1 

e     +oAa      -{eA    +eA)a 
P P P P 

is nonnegative.    This is so by assumption (i) and by the fact that a    is 

a nonnegative matrix.    Hence (iii) is satisfied, 

— 4 
It remains to be proved that A      is a Leontief matrix.    We note 

that (iii) implies that each column has at least one positive element. 

Furthermore,   A a A     is a nonnegative matrix; therefore,  the positive 

elements of 

Ä4    =    A4   -  AVA3 

4 —4 
can only be those of A  .    Hence  A     is a Leontief matrix. 

We shall extend the preceding result to the case of a square 

non-singular Leontief matrix of order  2m having the form 

(14) B 

1 

1. 
•1 

-1 
'•-1 

0 

0 
-1 

"'-I 

1 
'•I 

D2 

«1        r^ ; B      E 

r^1        o2 

E      B   j 

1 2 
where   D    and  D     are Leontief r.atrices,   of size  (m X p)  and  (m x q) 

respectively,   satisfying the conditions 

(15) e    D    >  0 
m 

and e    D    >  0 
m 
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Also,   the positive elements of   B  are assumed to be on the diagonal. 

However,   before proving our next theorem,   let us pause to 

introduce  some definitions and to state a necessary and sufficient con- 

dition for a matrix  B to be nonsingular. 

(16)   Definitions.    We call   B  a Leontief matrix with interconnections. 

and the columns   B    of   B which have an element   -1   interconnection 
J   

columns. 

The column of  B    corresponding to an interconnection column 

B    of   B  is called an importation column,  whereas the column of E 
J  c  

corresponding to the same   B.   is called exportation column. 

Finally,   we call   importation set the set  I    defined by 

I     =    { j | j e  M  and  B,   is an importation column}   for i   =   1, 2 

(17)   Lemma.    A Leontief matrix with interconnections is nonsingular 

1 2 
if and only if I A   I     -   3?. 

Proof.    Consider the matrix   B  obtained by multiplying the 

rows of   B having an element   -1  by the scalar  (1 - e )  >  0 ,   c   > 0,    i. e. 

B   =   MB 
M        0 

0       M 

B E 

E B 

1 2 
where   M    and   M     have the form 
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'l-e 
1-e 

M 

To prove that   B  is nonsingular it suffices to prove that there 

exists an 1 > e   >  0  for which B  is nonsingular.    To show this we ob- 

serve that,   as a consequence of (15),   there must exist an c  > 0  which 

is small enough to preserve property (15) for   B  also.    Furthermore, 

1^2 - - 
if I   fi I    =   tp ,   then the columns   B.   of  B  corresponding to inter- 

connection columns have also the property  e       B.  > 0;   hence,   ac- 
2m   j 

cording to theorem (2-4),    B is nonsingular.    Finally to prove necessity 

we note that if j c   I  ,    and if j €   I   ,   then   B.   =   -B.        and   B  is 
J J+m 

singular,contradicting assumption. || 

(18)   Corollary 1.    If I   0   I     -   9 ,   then the inverse of  B  is a nonnega- 

tive matrix. 

Proof.    From the preceding proof we know that 

B"1 =  B'1M 

where   B      is nonnegative by theorem (2-4) and  M  is nonnegative by 

definition. 11 

(19)   Corollary  2.    If  B   is a basis of a linear program,   then   B  is a 

feasible basis for any nonnegative right hand side   b. 

Proof.    Bw   =    b   =>   w   -    B      b  >  0   by corollary  1 
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Turning now to the triangularization of   B we premultiply it by the 

nonsingular transformation matrix 

(20) 

I 0 
m 

EV    I 
m 

and we obtain the square block triangular form 

(21) B PB 

B1     E2 

0      BZ 

where 

(22) 
■^2 „2       ^^1^2 
B        =      B    -   E   ß  E 

(23)    Theorem.      "5     is a Lcontief matrix having the property th.it 

e    B2  >  0 
m 

Proof.   Note that,   since   e      B >  0,    the proof of theorem (10) 
  Zm 

holds when we replace the signs   >  by  >^   however,   we want to prove 

— 2 
that   e     B      >  0. 

m 
2 

Considering  (12)    it can be easily verified that for any j  <}    I 

strict inequality still holds and therefore 

(e    BZ)    >  0 for all     i 4 I2 

m        j 1 
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Hence,   it remains only to prove that the inequality holds when  j €   I   . 

To do so,   we first observe that,   in the present situation,   (13)   becomes 

(e    B1   +   e    ESß1 
m m 

where,   by assumption, 

(e    B1  +  e    E1),   >  0 if    j 4 I1 

m ro      J 

=   0 if    j e   I 
1 

Furthermore,   the inverse   ß    of  B    must have the form 

H       0 

G       I 

where   H  is a nonsingular matrix with only nonnegative elements. 

Therefore, 

(e     B1   +  e    E^ß1 

m m >  0        if    j <! I 

But,   by assumption,    I (1  I     -   <P ;   therefore,  for  j e   I 

a     B     .    =   - '   (e     B    +   e    E     ß E 
m        j |       nn m 

>  0 

2 1 
since  E;    is a unit vector with unit in jth component and j 4   ^    ^or 

j e   I   .    This completes the proof. 
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(24)     Corollarv.      If G1   =    -EV,   then  0 <   (e    eV <   1  for all  j  k J1 

 «      Z m    J  

Proof.    By (17)  and (18)  there exists a matrix 

B 
B1     E2 

r.1 r,2 E B 

12 12 
such that  I H   I     -   cp    and I  U   I     =   M  which is a Leontief matrix 

with interconnections.    Therefore,   according to theorem  (23) 

e    B2   -   e    B2  +  e    B^2 >  0 
m mm 

If j e   I   ,   then the j*"  component of the above vector can be written 

as 

i - e   el > 0 
m J 

Noting that 9    >  0 ,    the conclusion of the corollary follows. | | 

Several remarks are in order now.    First,   it will be conven- 

ient to introduce the notations 

e1 =  -EV 2 2   2 
and 6     =   -E   ß 

whereby (21) and (22) can be written as 

(25) B   -    PB 

I 0 
m 

e     i 
m 

B1 E2 

E1 B2 

B1    E2 

0      B2 
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and 

(26) 
-•2 2 1^2 
B      ^    B     + 8  E 

112 1 
It should be noted that 9    and  0   E     are submatrices of  ß  ;   hence, 

once   ß    is known,   it is very easy to transform   B  as defined b'   (14) 

into   B.    We illustrate this point by showing below the structures of 

the various matrices involved. 

Dl    i    0 
B 

XXX 

XXX 

XXX 

0 

* *  X 

* *  X 

1 
1 i 

e 

B 

1 1 
1 

D2 B2     = 
1 

D2 

_«-* 

1 _ «-* 1 
| 

1 1 2 
where   :':   indicates an element   ß.     such that  i e   I    and j e   I   . 

1 2 
An economic interpretation of the elements    ß. .   modifying   B 

can be given if one considers the matrix   B as a feasible cooperation 

plan between two Leontief economies   I and  II for which the basic 

activity levels are defined by 

B [w  .   w   ]    = 
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1 12 2 
where  w    for   i f   I    and  w,    for  k ^   I     represent importation activi- 

J k 
1 2 

ties of economy I and economy II respectively.    Recalling that   I I 
1 

it can be easily seen that ( —r  |.    =    ß.. ;   hence, 

= T> 

J 1 
(27)     Interpretation.      If  : e   I    and j e   I    then  B .   represents the 

additional amount of commodity   i  that economy  I has to import when 

economy  II  increases its importation of commodity j  by one unit. 

Accordingly,   we introduce the following 

(28)     Definition.      We shall call the matrix 9    an adjustment matrix 

1 1 2 
and the elements   ß..   for which   i €   I andj € I   adjustment coefficients. 

3-3.    Equivaltnt Problems. 

In this section we point out the advantages of transforming 

problem (1) into an equivalent linear programming problem having a 

square block triangular basis,   and derive,   for future reference,   a 

series of simple equations related to this transformahon.    Further,   we 

discuss some of the computational aspects of the square block tri- 

angulanzation method. 

Assuming that we know a feasible basis   B  of problem (l),we 

consider its t vo transforms   B  and   B,    defined by (21)  and  (29) respec- 

tive!'/.    We recall that these matrices have the form 

(29)     B 

1 
B EZ 

E1 B2, 

B 
B1    E2 

0     B2 

and     B 

-1 
B       0 

E      B 
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where 

^    =    B2  +   ö'E2 91     ;     - E'ß1 

B1  =  B1 . fl^1 e2   =   - E2ß2 

Next,   since the matrix  P     which transforms   B  into   B is a 

nonsingular matrix,  we can transform problem (1)   into an equivalent 

j.   oblorn by premultiplying the coefficient matrix Df the former by 

P .    This new problem,   which will be referred to as the equivalent 

prrb!etn ; orresponding to the basis   B,   can be stated as 

Minimize   Z    =   cx     +dy     +dy    +cx 

.-0) 

U             .         *                        A1      i               T              i              T            2 ,1 subject    to         Ax+Iy-Iy =b 
m m 

Ti   I       =2   1      =2 2 .2  2        ,2 Ax     -Ty    +Ty +Ax      =b 
i 

V                                   x1   >   0,    y1   >  0.      y2 i  0,      x2   >  0 

where 

Ä1 = :   e'A1 

T2     = m 

B2 - b2.«1^ 

We note that,   by definition,   we can solve either the original 

problem or the equivalent problem since both have the same solution 

set.   Of course,   for reasons which will become apparent in the next 

section,   we will choose to solve the latter.   However,   before we go 

into further details,   it will be useful to establish the following rela- 

tions between these two problems. 
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Consider first the problem of the determination of the values 

12 - 1    ? 
of the simplex multipliers  [ TT  TT  ]   and   [ TT TT ]   associated with   B 

and   B respectively.   Denoting the cost vector corresponding to these 

bases by  [ y   . Y  1    we have,   by definition 

J    (TT   .TTIB   =    (y   .Y)       and 
(31) { 

(^1.TT2)B   =    (YN2) 

Accordingly,   it can be easily verified that 

J      TT =     Y    ß 
(32a) 1 

TT ^      (Y        -    TT    E     )P 

Hence,   recalling that by definition   B       =   B    P,   we have 

t   l     *-. ..1   .2VD (TT    , TT    )        =     (TT    , TT    )P, 

i. e. , 

1 .1 -2nl 
TT =        TT        ■+-    TT    ü 

(33a) \ 
I     2 .2 

TT -        TT 

Similarly,   if  (T-  ,TT   )   are the simplex multipliers  associated 

with   B   we have 

. 

(32b) 

-1 ,   1        -2r
1^1 

TT =      (Y        -    TT    E    )ß 

-2   -   Y  ß 

and 

TT
1
    - w1 

(33b) \     "z' lz+   -1,2 
TT = TT        +    IT     Ö 
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Finally,   the following relations will also be useful 

-1          -1 -2fll 
(34a)                                   < 

*   -2         .2 -1.2 
TT -      TT -    TT    O 

or 

-1 -1 -2fll J       TT =      IT        - IT    Ö 

(34b' 1    .2 .2 .lfl2 
TT =     IT        + TT    ö 

Two remarks must be made now.   First,   note that,  if the col- 

umn eliminated during a simplex step applied to problem (30)  belongs 

to the matrix "E   ,   then the new prices  TT  can be obtained by computing 

only the inverse of the new basis  15     since  TT     remains unchanged. 

This remark will be important in the following section. 

1 2 Next,the above relations hold whether or not  D    and  D    are 

1        2 Leontief matrices;   the only conditioned required is  I n   I    =   tp . 

ä 
The next problem we consider is the representation,    say A   , 

9 

of a vector  A     in terms of the basis   B.    By definition we have s 7 

(35) A"   -    B^A      =   B^Ä s s 

where  A    =   P A     is equal to s s ^ 

Ä1    -   A1 

(36) 
2 

Ä     =   A2 + ö'A
1 

s s s 

Consequently,  we have 
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(A^# --   ß^A* -   EZ(Ay] 
(37) 

(A2)# =   ^2[A2 +   ö'A1] s ^    l     s                 SJ 

Obviously,   the above formula can be applied to compute the feasible 

solution corresponding to the basis   B; it suffices to replace  A     by 

b =   (b , b   )   to obtain 

w1    =   ß^b1   -   E2w2] 
(38) 

w2   =   ß2[b2+   Ö1^] 

Finally,   we have to indicate the equations relating the inverses 

121 —2 121 2 ß , ß , J5    and  ß     of the matrices   B , B , ß   and "5     respectively.   How- 

ever,   before doing so we shall introduce a very convenient formula 

due to Sherman and Morrison [ 3 5]   which can best be stated [ 3,  p.   36] 

as follows: 

(39)      Lemma.      If  B is a nonsingular matrix of order  n and if 

B  =    B +  CAD 

where  A  is a nonsingular matrix of order m and  C  and  D are ma- 

trices of size   (n X m)   and   (m   X   n)   respectively,   then,   provided 

that M       exists, 

l"1    -    B'1   -   B^CM^DB"1 

where 

M   =   lA"1   +   DB^Cl 

Proof.      It is easy to check that   BB       =  1.   This completes 

the proof. 
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A particular case of this lemma is the following well known 

result [9,   p.   198] : 

(40)     Corollary.      If a column  P    of a nonsingular matrix   B  is re 

placed by a column   P   ,    i. e. ,   if 

B  -    B +   (P     -   P  )n' s r     r 

then,   provided that   P      ^   0, r rs 

B"1    =    B"1   - -i— (P    -   u   )B"1 

p s r'    r 
rs 

here  P    =   B^P     and   B'     IS the rth   row of B' s s r 

Proof.     Applying   (39)   we have 

1+ B     (P     -   P  ) r        s i 

which is equivalent to the form given above,   since by definition  P     = 
9 

B^P    and   B^P     =   u   . (I s r r    " 

Remark.      Note that  P      ^   0  is a necessary and sufficient con-   rs 7 

dition for   B to be nonsingular. 

1     2 We are now in a position to give the relations between   ß , ß  , 
! 2 

P     and ^   .    To do this we extend our notations 

Ö1    -    - EV end eZ   =    - EV 

to 

1 r^löl zr 2 ^2^2 ^i - E'ß* and ?6   =    - E6ß 
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We have three cases to consider. 

1 2 (i)   When ß    and  ß     are known,  then 

B2   -    B2   -   EVE2   =    (I   -   Ö1Ö2)B2; 

hence 

(4i) ß2 = ß2[i - e^2]"1 

and,   similarly, 

ß1  - ß1 [i - ö^1]"1 

1 —2 (ii)   When ß    and  ß     are known,  then 

B2   -    B2  +   EVE2   =   (I +   Ö1^2)"!2; 

so 

(42) ß2   =    ß2 [I +  ö1?2]'1 

2 -1 and,   similarly,  when ß     and  ß   are known 

ß1 = ß1 [i + e2^]"1 

-12 - 2 (iii)   When  ß   and  ß     are known,  one can compute directly  ß 

— 2 2 112 by applying   (39); the iriverse ofB      =B     -EßE     is 

-2 2 2   1-12  2 
ß      -   ß    +   ß E M    E  ß     ■ 

whe re 

M   -   [B1   -   E2ß2E1]    =    B1; 

hence 

(43) ß2    =   ß2[l + 71Ö2] 
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and,   similarly. 

ß1 - ßMi + ffV] 

3-4.   Decomposition Procedure for Two Interconnected Leontief Systems. 

We come now to ihe object of this chapter which is the develop- 

ment of an efficient decomposition procedure to solve problem (1). 

As was done in Chapter II,  we shall set up two subproblems which 

1 2 will be based on the matrices A    and A     respectively,   and,   as be- 

fore,   these subproblems will be perfectly symmetric in the sense that 

the required kind of information exchanged is the same in both direc- 

tions.   The difference between both methods lies essentially in the fact 

that here the simplex multipliers of the subproblems will also be the 

simplex multipliers of the equivalent problem.   To achieve this we 

will have to adjust the coefficient matrices of the subproblems at each 

iteration.    This can be done quite easily,   as we shall presently see. 

1 2 First,   recall that we assumed that  b    and  b    are positive; 

therefore,  according to (2-6),   any feasible basis to problem (1)  must 

be a Leontief matrix.    Consequently,   if the simplex method is applied 

to solve problem (1),   then the pivot row will be determined by the 

position of the positive element in the column to be in'roduced.    Thus, 

(44)     Remark.      In any feasible basis   B  to problem (1)  the sub- 

1 2 matrices   B    and   B     correspond to coefficient columns associated 

11 2     2 with  (x ,y  )   and   (x   ,y  )  respectively. 

Next,   we assume that we have a feasible basis,   say   B,    to 

problem   (1),   and we consider the equivalent problem (30)  associated 

with it.   In order to improve the basic solution corresponding to   B we 
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apply the simplex method to this problem,   limiting the pivot choice to 

2 2 the variables  x     and  y     only.   It is a simple matter now to show that 

the simplex steps thus performed can be carried out simply by solving 

the following subproblem which will be referred to as the improvement 

2 
subprogram based on   B  . 

2 
Minimize   Z     satisfying 

(45) 

.2  2       _2  2 ,2 
A x    +  T  y      =   b 

2  2        2  2 _2  .     .   . c  x    +  t y      =    Z     (mm) 

2 2 
x^  >   0, y^   >   0 

where 

(46) 

T2   =   [I       -   Ö1]   . and I1    =   M  -  I1 1   m •'•il 

2 2-1 -1 
t      =   [d     +  ■'T   ]_i where   f    is defined by   (32a) 

I 

(47)      Lemma.      The coefficient matrix of   (45)   is a Leontief matrix 

with substitution having the property 

e    A1   >   0 and e     T2  >  0 
m m 

Proof.      It suffices to note that  e    A     >   0 holds by definition   m ' 

and that 

e    T2   -   e     (u    -   Ö1)    =    1   -   e    Ö1   >  0     by   (2i). m   j m    j j m j 

(48)      Theorem.      To solve the improvement subprogram   (45)   is 

equivalent to solving problem (30)   when the pivot choice is restricted 

2 2 to the variables  x     and  y   . 
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Proof.      First,   we note that,   according to (47) and (2-6),   any 

feasible basis to subproblem   (45)   is a Leontief matrix;   therefore,   by 

(18),   the corresponding matrix 

B   = 

B1     E2 

0       B' 

is a feasible basis to problem (30),   Next,   we observe that,   by (44), 

no column of   B    is eliminated; hence,   by (32a),   the simplex multi- 

pliers  ü    associated with the first m  rows of B are constant and the 

2 
simplex multipliers ü     associated with the last  m   rows of  B are the 

-2 
simplex multipliers of (30)  corresponding to the basis   B   ,   Conse- 

quently,   the columns of (4 5)  and the corresponding columns of (30) 

price out identically.   This implies that the pivot columns and,   there- 

fore,   the pivot rows,   are the same,   and since there is a one to one 

correspondence between the bases   B and   B    the   conclusion of the 

theorem follows. || 

The above theorem tells us that by solving subproblem (45) we 

find an improved basis to the original problem (1). To this basis cor- 

respond the simplex multipliers   (33) 

1        -1   .   -2fll TT        =     T        +    IT    ö 

2       _2 
TT        =     TT 

2 2 
with which the coefficient columns of the variables   x     and y    price 

out nonnegative.   If the coefficient columns of the variables  x    and y 

-, 
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also price out nonnegative,    then the basis thus obtained is optimal for 

problem (1).    If these columns do not price out nonnegative,   then to 

further improve the feasible solution,   we reverse the decomposition 

step just described by transforming,   this time,   the coefficient matrix 

of problem ( 1)   by 

I 0' m 

0 I m 

where   6     corresponds to the optimal basis found by solving   (4 5) 

Thus we obtain the new improvement subprogram 

Minimize   Z     satisfying 

A  x     +   T  y      =   b 
(49) 

where 

11 11 ex      +     t  y Z1 (min) 
I 

x1   >   0,      y1   >   0 

T1   -    (I      -  Ö2)   , and I2   --   M   -   I2 

m -j c 

1 1       _2 —2 t       =    (d    + TT   )   -,      where this time  IT      is defined by 
1^ 

(32b) 

It is obvious now that,   by solving iteratively the two subprob- 

lems (45)   and (49) we will be lead in a finite number of steps (a con- 

sequence of (46))  to the optimal solution of problem (1).    It remains 

to indicate that the optimal solution to problem (1)  is given by (38). 
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Finally,   to summarize,   we illustrate in figure 3-1  below the 

steps of the decomposition procedure just described.    The following 

is the key to the numbers in parentheses appearing in the figure. 

(1 

(2 

(3 

(4 

(5 

(6 

(7 

(8 

(9 

(10 

coefficient matrix of problem ( 1) 

feasible basis   B(0)   to problem (1) 

basis to equivalent problem 

improvement subprogram a(l)   for which a feasible basi. 

is '52(0) 

optimal basis to a(l) 

improved feasible basis to problem (1) 

basis to equivalent problem 

improvement subprogram b(l)   for which a feasible basis 

is   B^O) 

optimal basis to problem (1) 

improved feasible basis to problem (1) 
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3-5.   Algorithm. 

The algorithm for solving problem (1)   which is based on the 

decomposition method outlined in section 3 will solve iteratively the 

subproblems 

' Minimize  Z    subject to 

a(t) 

*1     1 rr-1    1 A x    +  T y     =   e 
m 

< 
11 11 „1,* ex    + t y       =     Z    (mm) 

x1  >  0,       y1   > 0 

and 

' Minimize  Z    subject to 

b(t)   ) 

A2   2       ^.2 2 
A x    + T y     =   e 

m 

2  2        2 2 2 
c x    + t y       =     Z    (min) 

x     >   0, y     >   0 

where 

1 2 
A    and A    are the Leontief matrices with substitution of 

problem   (1); 

1 2 
c    and c     are the cost vectors of problem (1); 

e      is an m-component vector whose elements are all one. 

112    2 
T , t , T , t    will be defined in steps 3 and 4 below. 

We now list the steps of the algorithm. 



Step  1.     Solve the subproblem 
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a(l) { 
w ^1 1      1 
Minimize   Z      =   c  x 

.11 1       « subject to     Ax     =6, xiO J m 

This yields an optimal basis  B   (1),  its inverse    ß   (1)   and optimal 

simplex multipliers tr   (1).   Set I   (1)    =   qp and 0(1)   =   0  (zero matrix). 

Set 7(1)   =  f (1).   Go to step 2. 

Step 2.   Solve the subproblem 

2 2  2      r   2      «1     i     2 
Minimize  Z     -ex    +ld    +iT(l)Jy 

2 2 2 
b(l)    / subject toAx+Iy     =e 

mm 

\ 

2 2 
x    >   0,     y    i  0 

—2 ,2 
This yields an optimal basis   6(1),   its inverse (5   (1),  optimal simplex 

„2 2 2 2 
multipliers IT   (1)   and an importation set I  (1).   Let ü   (!)   = ¥   (1) 

and ö2(l)   =   - E2(l)ß2(l) (14) 

Set t =  2 and go to step 3. 

Step 3.   Solution of the improvement subprogram a(t). (49) 

The following data from b(t-l)   are needed: 

This and the subsequent numbers in parentheses refer to 
equations given in preceding sections. 
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I2  = I2(t-1).       Ö2 =  Ö2(t-1)       and      ¥2 = F2(t-1). 

(a) Compute the initial simplex multipliers of a(t) 

n1   =   Wl(t'l)   + TrVu-l) (34a) 
2 

and also,  if TT   (t-1)   is not easily available, 

-2 2      .1„2 2 
w     = TT     - IT 0     =   »  (t-1) (34a) 

(b) Set up the coefficient matrix of a(t)   with 

1 r /,2, -2 2 
T    =    I      -  Ö  ]   ,       where l'  = M -  I 

t1 = [d1 + vZ]   2 (50) 
I 

(c) Compute the inverse 

^ = pNt-Dtl - dWit-l)]'1    (41b) 

1 «1 (d) Using TT    check if the initial basis   B   is optimal.   If it 

is,   set k =  1 and go to step 5.   If not,  go to substep  (e). 

(e) Solve the improvement subprogram a(t)   starting with 

-1 -1 
the initial basis  B.   This yields an optimal basis  B   (t), 

as well as iV),   ßV)   andif^t). 

( f)   Compute the inverse 

P1(t)   = ßV) [I + e2©1]"1 where  01 =  - E1(t)p1(t)     (42a) 

Compute 

^(t)   = YVU) (32a) 

and set 

^(t)   =  - E1(t)p1(t) 

Go to step 4. 
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Step 4.   Solution of the improvement subprogram  b(t) . 

The following data from a(t)   are needed 

I1 = I^t), Ö1 =  Ö1(t)J       and      if1 = irl(t) 

(a) Compute the initial simplex multipliers of b(t) 

w     = w  (t-1)  + «0(1-1) (34b) 

and also,  if If (t)   is not easily available, 

T1 = w1 - IT^1 = ff^t) (34b) 

(b) Set up the coefficient matrix of b(t)   with 

T2  = [I      -  Ö1]   , where I1 =  M  - J1 

m —1 

t2  =  [d2 + TF1]   , (46) 
r 

(c) Compute the inverse 

p2   =   p2(t-l)[l -  Ö102(t-1)]"1 (41a) 

2 —2 (d) Using ir     check if the initial basis  B     is optimal.   If it 

is,   set k  =  2 and go to step  5.   If not,   go to substep  (e). 

(e) Solve the improvement subprogram b(t) starting with the 

initial basis fit . This yields an optimal basis a(t). as 

well as I^t),   ß2(t)   and 7r2(t). 

( f)   Compute the inverse 

ß2(t)   ^itHl+ö1*2]-1    where   Ö2  =  -E2(t^2(t) 

(42) 

Compute 

^2(t)   =  YV(t) (32b) 
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and set 

w2  =  ß2[b2 -  E^t-ljw1] 

(b)   if k ? 2,   then an optimal solution to problem (1) is 

2      rr2r,2      A.I 
w =   ß    [ b    +  Ob] 

w1   =  ß^b1 - E2(t-l)w2] 

This completes the statement of the algorithm. 

Some remarks are in order now.   First,  it should be mentioned 

that it is possible to limit the exchange of information between the 

subproblems a(t)   and b(t)  to some subsets of 6   and 0   (   which 

2 1 must necessarily include the columns corresponding to I    and I   re- 

spectively,  provided that some obvious precautions concerning the 

optimality criterion are taken.   For instance one might communicate 

.2 
to subproblem a(t)   only the columns j of 0    for which the simplex 

1 2 
multipliers IT   and TT    of the original problem satisfy the relation 

[dl + v2].   < irl j €  M. 
J J 

ö2(t)   =   -E2(t)ß2(t) I 

(g)   Set t =  t + 1 and return to step 3. 

Step 5.   Computation of an optimal solution. (38) 

(a)   if k =  1,   then an optimal solution to problem  (1)   is 

w    =   ß [b   + Ö b J 
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We have reasons to believe that for such a selection the convergence 

of the preceding algorithm would not be greatly affected.   The above 

remark should be important for the solution of problems concerning 

the cooperation between two economies. 

Finally,  we wish to indicate that,  if in step 3 the matrix 

— 2 -1 
6   (t-1)   is readily available,  then it will be easier to compute  ß 

through (43).   Of course,  the same remark holds for step 4. 

3-6.   Conclusions. 

Some concluding remarks are in order now.   They will all 

have to do with comparing the preceding algorithm with the method of 

chapter II as well as with the decomposition principle of Dantzig and 

Wolfe [9,  ch.  23].   We are not going to prove our assertions,  but will 

limit ourselves to summarizing some of the observations we have made. 

First,  the structural parallelism of the algorithms of chapters 

2 and 3 is illustrated in figure 3-2.   As was already indicated,  they 

have in common the fact that both are symmetrical decomposition 

procedures based on price communication between the two sub-prob- 

lems.   However,  in the preceding algorithm some additional exchange 

of information is required,   i. e.,  the exchange of the adjustment matrices 

6   and  6    (28).   It is this additional information which permits the 

"acceleration" of the convergence.   Why? Simply because the simplex 

1     2 
multipliers  (TT »ir   )   corresponding to a basis of problem (1) are 
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found directly by the square block triangularization method,   whereas 

they are found only in the limit by the price communication method. 

The following economic interpretation can be given to illustrate 

the preceding remark.   Suppose an economy I   imports from economy 

2 
II one commodity i at the price ir.   (t-1) ,   and suppose that,   under 

these conditions,   optimal prices for economy I are IT (t).   Next, 

suppose that economy II discovers that by importing commodity j 

2 2 
from economy I it can decrease its optimal prices IT   (t-1)   to IT  (t). 

But this decrease will cause a decrease in v (t+1)   which in its turn 

2 
will cause a new decrease in IT  (t+1),  and so on.   Now,  the algorithm 

of chapter II actually follows this iterative process, whereas the al- 

1 2 
gorithm of chapter III finds the limiting prices IT    and IT     right away. 

For further  clarification of this remark see  (27)   and (28). 

The comparison with the decomposition method of Dantzig and 

Wolfe would require a lengthy exposition.   We shall limit ourselves 

to the following conclusions. 

(i)   If the standard decomposition method is applied to the 

primal problem (1),   then an asymmetry is introduced in the sense 

that one part of the program will become the master program and the 

other part the subprogram.   Consequently,  the exchange of information 

between both parts is not the same in both directions. 

(ii)   It can be proved that when the decomposition principle is 

applied to problem (1),  it is advantageous to solve the subprogram 
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by adopting the following rules. 

(a) First solve completely the subprogram,  disregarding 

any homogeneous solutions which might arise. 

(b) When the optimal solution is found in (a),  consider 

all the homogeneous solutions and introduce them in 

the master program« 

Note.    The application of rule   (b)   corresponds exactly to the commun- 

1    2 
ication of the information  - ö  E    of chapter III. 

(iii) It can be shown that when rules (a) and (b) are applied, 

the master program works on the same principle as the algorithm of 

chapter HI, whereas the subprogram has the same function as a sub- 

problem of chapter II. 

This contradicts the generality of the empirical statement 
[ 7,   p.   11] that it is more efficient not to solve the subprogram com- 
pletely. 



64 

CHAPTER IV 

GENERALIZATION OF THE DECOMPOSITION METHOD 

BY SQUARE BLOCK TRIANGULARIZATION 

4-1.   Application to  N Interconnected Leontief Systems. 

In this section we shall see how the decomposition method by 

square block triangularization can be extended to solve linear pro- 

gramming problems based on more than two interconnected Leontief 

systems.   Generally,   these problems can be stated in detached coef- 

ficient form as follows: 

(1) M .limize   Z   subject to y     i  0 

x1 > 0 x2 > 0 x3 > 0 
12 

V 
13 

v 
21 

v 
23 

v 
31 

v 
32 

v const. 

A1 I I -I -I b1 > 0 

A2 -I I I -I b2 > 0 

A3 -I -I I I b3 > 0 

1 
c 

2 
c 

3 
c d12 d13 d21 d23 d31 d32 

Z(min) 

where we assume that 

(2) 

e    A    >   0 for i  =   1. 2, 3 
m 

>    AXl   ^   A^ d J + dJ   > 0     for     i ^ j    and    i = 1. 2. 3.      j = 1. 2. 3 

c    >   0 for       i   =   1. 2. 3 
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We shall first consider a special case of problem (1)   (arisirg 

from serially interconnected Leontief systems)  whose coefficient ma- 

trix and feasible bases have the following staircase structures: 

(3) A 

A1 I         -I 

-I         I A2 I -I 

-I I A3i 

B 

B1 E21 o  ! 
E12 B2 E32 

0 E23 B3 

where   B ,    B    and   B    are square Leontief matrices. 

To decompose such a problem the following generalization of 

the method described in section 3-4 can be applied. 

(a)   Given a non-optimal basis   B we consider the transforma- 

tion matrix 

P(a)    = 

1  I 0 0 

0(a) 1 0 

0 0 I 

where  0(a)   = 
^12  1 
E     ß   . 

and compute the simplex multipliers 

-1 101 
7T        =    Y    ß 

(b)   Premultiplying by  P(a)   the coefficient matrix A we ob- 

tain an equivalent problem whose coefficient matrix has the form 

'.  4 
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(4) A(a)    = 

A1 I I 

Ä1 -T1 T1 A2 I -I 

-I I A3 

where 

A^ 0(a)A1 

T1   =   I  -   0(a) 

We note that the corresponding feasible basis is 

(5) B(a)    =   P(a)B 

B1 E21 0 

0 B2(a) E32 

0 E23 B3 

where 

B (a)    =   B    +  ö(a)E 

(6) , 

(c)   Next,   consider the following subproblem: 

Minimize  Z     subject to: 

x2,
S0 x2 > 0 y

23
2o y32^ x3 > 0 Constants 

T21 A2 I -I 0 e 
m 

-I I A3 e 
m 

.21 
2 

c d23 d32 3 
c Z1 (min) 

.■" ' 
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21 r   21, 
x      =   [y    ].I2 

T21   =   [I  -   ö(a)]^ 

A T12 XA T12 and      I        =   M  - I 

21 r,21      «1, 

We note that this subproblem is the problem studied in chapter III,   be- 

21 
cause,   according to III-(24),   the matrix  T       has the property 

e    T        >   0; 
m 

hence,   subproblem (6) can be solved,   starting with the basis 

B B2{a) E32 

EZ3 B3 

by the algorithm of section 3-5. 

(d)   It can be easily verified that to an optimal basis of sub- 

problem   (6)   corresponds a feasible basis of the original problem.    If 

this basis is not optimal,   then we repeat the preceding step by trans- 

forming,   this time,    B into 

By definition II-(22),   I  " is the importation set  (j/E. 
1 12 u )   which corresponds to the basic variables  y. 

J J 

r. 
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Bl E21 0 

B(b) = P(b) B = El2 B
2

( b) 0 

0 E23 B3 

where and 

Thus , the decomposition method for solving a multistage Leonti f 

system is a straightforward extension of the method outlined in chap t r 

III. 

We shall briefly show now that the same holds for the de com-

position method for solving problem ( 1) in general ; however , more 

adjustments have to be made , and this inc r e ases the necessary ex-

c hange of information between the subprograms . At this point it should 

be recalled that the decomposition procedure by price communication 

which was developed in chapter II yields very eas i ly a feasible bas is 

fo r problem ( 1 ). Therefo r e, in order to avo i d unprofitable computa-

tions , it i s suggested that this method be used to determine an im-

proved starting bas i s for the decomposition method by square block 

triangule\riza tion whos e bas ic steps are : 

( a) transform the starting feasible basis as follows : 

( 7) B( a) = P( a) B = 

I Bl E21 E31 Bl E21 E31 

8
12 

I X E12 B2 E32 = 0 B
2

( a) E32(a) 

8
13 

I El3 E23 B3 0 E23 (a} B
3 
(a} 
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wh re 

(b) note that the improvement program has the fo rm 

A1 I I -I -I 
- 1 
A A 2 -"1 -T- 012 - 21 

T I -012 -I 
=2 
A A 3 0 1 3 -3 1 

-T -0 13 -I 
- 31 
T I 

where r 21 = I- 0
12 

and 

(c) Improve he basic so lution of the original pro :>le m ( 1) by 

solving the fo llowin improvement subpro ram [see III- ( 4 8 )] . 

( ) Minimize Z subj e ct to 

x21 > 0 x 2 
> 0 v23 > 0 v32 > 0 x 3 

> 0 x31 > 0 constants 

T21 A2 -12 
I - I 0 -0 em 

-13 A3 T31 -0 0 -I I e 
m 

t 21 2 d23 d32 3 t31 Z (min) c c 

where 
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21 
.y21) 

T12 

31 
(y    ) 

T13 

21  = (i - e21) 
I12 

•31 = (i - e31) 
T13 

21 ^21      wlv :        =    (d      + T   ) 
i12 

31 /031       _lv t =      (d +    TT     ) 
I13 

e12 = (e12) 
i21 

e13 
= (e13) 

i13 

(d)   Finally,  note that the coefficient matrix of (8)  is a Leontiel 

matrix.    Therefore,  a decomposition procedure similar to the algorithm 

of section 3-5 can be applied to solve this subproblem.    It can be ver- 

ified without difficulty that the final subproblem to be solved will have 

the form; 

(9) 

Min  Z     subject to 

_32 23   ,    .3  3   j   _31   31 
STx      +Ax+Tx 

m 

32  23 3  3      -31   31        ^3, v tx      +cx+t     x       =Z( mm) 

where 

T32   =   [I  -  e32] 
i23 

„32 ^23   lt   v Q       =   - E     ß  (a) 

/1A,      32 rj32      „2, 
(10)     t =    [d       +  if   ] 

i23 

2 _2   2 

_31 r   31       ä12-2i T =    [ t       +  Ö      IT   ] 
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4 -2.   General Two-Stage Problem. 

In this section we shall extend the decomposition method by square 

block triangularization to the general two-stage problem 

Minimize   Z  subject to 

(H) 

A!   1        ,      1       T      2 Ax     +ly     -ly 
m m 

=   b    >  0 

1 

1 2 2  2 2 
Iytly+Ax     -b>0 
m m 

11       Jl   1       XI 2  2 , ,    .   v cx+dy+dy+cx       =Z (mm) 

112 2 
x>0,      y^O,      y>0.    x>0 

1 2 
where A    and A     are arbitrary matrices of size (m X n  ) and (m X n.) 

(12) ,1       J- d    +  d     >   0 

which,  as indicated before,   is necessary for a solution to problem 

(11) to exist. 

Basically,   the method to be described will be similar to the 

one outlined in section 3-4.   However,   in the present case,   a compli- 

cation arises at each simplex step of the improvement subprograms 

because we have to take into account the possibility that the new cor- 

responding basis to problem (11)  might become infeasible.    The main 

object of this section is to show how this difficulty can be overcome 

by an additional exchange of information requiring only simple compu- 

tations. 
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We begin by generalizing our notations.    To do this we must 

consider a feasible basis of problem (11)   which,   generally,   has the 

form 

B 

«1     ,?2 B       E 

el   a2 

D1 

1 
1 

-1 
-1 

0 

0 

-1 
-1 

+ 1 
+ i 

D2 

-1 -2 
where the submatnces   B   and  B    are not necessarily square.    We 

shall first show that 

(14)     Lemma.      ft is always possible to transform  B,   by columr 

permutations only,   into the matrix 

B   = 
ß       E 

E1     B2 

■—    -I 

D1 

1 
-1 

1 
-1 

0 

o
 

-1 

1 

-1 
1 

D2 
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where   B     is a nonsingular submatrix of order  in. 

r -1      -2, Proof.      Let the submatrix IB   ,  F  J   of  B be denoted by 

[ D,  H,   0] ,   where  H corresponds  to the connection columns,   and 

let us suppose that a basis for this submatrix is 

— 1 B1    -   [D.   H] 

where   D and H are submatrices of D and H  respectively.   We first 

note that the nonsingularity of   B implies that: 

(i)   B     has rank m 

(ii)   the columns of  D are linearly independent 

(iii)   the columns of H are linearly independent. 

Next,   expressing a nonbasic column  D.   in terms of  B    ,   i. e. , 
J 

D.    =   DX.1 + H\2 

J 

we note that,   since (ii)  holds,   there must exist at least one component 

2 2 
of \   ,    say \   ,   which is nonzero.   Hence,  we can replace in the basis 

B    the column H,   by the column  D.  and thus obtain a new basis.    By 
k j 

repeating this operation we can introduce all the columns of D into 

the basis. || 

Thus,    B of lemma (14)   becomes the counterpart of the 

Leontief matrix III-(14);  accordingly,   we generalize the definitions 

of the importation sets  11-(22)   as follows: 



(15) 
1     =   {i/E      =   ±u.} and 

J » 

I2   =   {i/E2   =   ±u.} 
J i 

and we note that,   since   B is nonsingular,  we must have 
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(16) 

We turn now to the steps of the decomposition method to solve 

problem (11).    To do this we shall follow the development given in 

section 3-4 and refer to it whenever the situations are parallel. 

We start by assuming that we have a feasible basis to problem 

(11)   which has the form (14).   Under this condition,   the inverse of   B 
1 

exists and therefore,   as before,  we can transform problem (11) into 

-ir equivalent problem which can be stated as 

(17) 

.   w , 11       Jl   1       J2 2 2  2 
Minimize   Z   =   cx    +dy    +dy    +cx 

subject to A
1

   1        T       1       T      
2 

Ax    +  I    y    -  I   y 
m m 

=   b 

-11       —2  1       -2 2 2  2        r2 
Ax     -Ty    +Ty    +Ax      =b 

112 2 
x>0,      y>0,      y>0,     x>0 

where 

(18) 

Ä1 = O'A1 

T2   =   [Im   -   Ö1] 

b2 = b2 + e1*1 
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and 

e1 -. -E'P1 

We recall that a feasible basis to this problem is 

(19) 

T.1       rr* B E 

0      Bl 

— Z Z      nl   I where   B      =    B    +   ö  E 

and we note that  B     must be nonsingular since   |B|   =   |B|X   IB^I^O 

Two remarks are in order here. 

(i)   It can be easily checked that 

T2  =   0 
J 

when      j c   I 
1 

-Z Z      -ZT-Z 
(ii)   b     is not necessarily nonnegative,   although w    =   ß   b   > 0 

Next,   we consider the following subproblem which is the im- 

provement subprogram  IiJ-(45): 

2 2 2        2  2 Minimize  Z      =   c   x    +  t y 

(20) subject to 
2 2      ^2 2       ,-2 

A  x    +  T y     =   b 

2 2 
x    >   0.    y    >  0 

where,   if T      =   M   -   I       and    F     =   Y  ß   • 

T2   -   ^m   "  e^   1 m y l 

2 2 1 
t     =    (d    + W   ) 

I1 
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b2 ^ + e1*1 

As before,   it can be easily checked that as far as the determination of 

the pivot column is concerned,   the above subprogram is equivalent to 

2 
problem (17)   when the pivot choice is limited to the variables   x     and 

2 
y   .    But this is no longer true for the determination of the pivot row, 

since subprogram (20)  disregards the first  m   components of the 

vector 

A      =   B"1 A      =   B^A s s s 

where  A     is the column to be introduced into the basis   B of  (17).    We 
s 

recall that,   when solving (17)  by the simplex algorithm,   the pivot row 

is determined by the criterion 

b
r ,12 

Z    =   mm (x    , i   ) 
a 
rs 

where,   if b  =   (b1 , b2)   -   B^b      and       A     -   [ A1 . A2]   =   B^A    -  B^A   , . 
s s       s s s 

(21) 

-1 
b    , 

1 min J; [ (ä1 A1     , a z = A. 
-1 -i f is is 
a     > 0 > 3       J 
is IS 

r £21 2 min J         !     1 a 
.2 I. ~ t.    J 
a.    > 0 a. 

is is 
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Furthermore,   we recall that we have,   by  III-(37), 

(22) 

and 

(23) 

rl Ar Al       ^2-2, 
A     =   3 [A     -  E A 

s        ' s s 

r2        T2rA2       ol.li T2 —2 
A     ^ß[A+ÖAj=ßA s        r   L    s s r       s 

rl        AfA       ^2-2, b =   ß  [ b    -  E  b ] 

-2       -2r   2       «1   1,        -2-2 
b =   ß   [b    +  0b]    =   ß    b 

2 
At this point it is easy to see that,   as expected,   a     is deter- 

mined by the subprogram (20),   whereas a     has to be computed separ- 

ately.   However,   it should be noted that this can be done very easily, 

since all the data necessary for the computations are known.   Further- 

more,   it should be emphasized that the exchange of information between 

the two systems is limited to 

2-2 2-2 1 
E A   ,        E b and      a 

s 

This fact could become important in case of decentralized computations. 

Finally,   i. remains to examine what has to be done when o.1 < a2. 

In such a case a column corresponding to the matrix  B    has to be elim- 

inated from the basis   B,   and,   therefore,   a new problem (17)    has to 

be set up which will require the following operations: 
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(a) determanation of a new basis   B   ; 

(b) computation of its inverse   ß   ; 

(c) computation of TT     =  y ß   ; 

(d) modification of the coefficient matrix of subproblem (20); 

-2 
(e) computation of the new inverse  ß    . 

This seems quite formidable,  but actually is not,   as we shall sec now. 

th 1 If we assume that the r      column is eliminated from   B  ,   then, 

to    determine a new nonsingular   B    and to compute its inverse  ß     we 

apply corollary III-(40)   as follows: 

(i)   If  (ß A  )      ^0,   then we replace column  B     by A    and 
s   r r s 

compute the new  ß    by (24)  given below,  with P   = ß A   . 

(Note that this vector was computed in (22)). 

(ii)   If  (ß A  )      =0,   then,   according to lemma (14),   we can 
s   r 

1 2 1 
replace the column  B     by a column E,   for which  6,^0: 

r k rk 
— 1    2 1 ~1 

we let  P     -   (ß E   )   =  ±ß    and compute  ß     by 
S K. K. 

(24) ß1   =    p'   -  —1— (P.  -  u   )p' 

1 th 1 where   B     is the r      row of ß   . 
r r 

The column permutations of these operations are summarized in figure 

4. 1   below. 

Now it is easy to carry out (c)   and (d).    We denote the new 

r      by IT      and the new  0     by 6   .   It remains to compute the new  ß 
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(i)     When    (ß   A   )     ^0,   then replace   B     by A 
s r r r s 

B1 E2 

E1 B2 

(ii)     When (ß1 A1) 0     and 
2              2S r 1 

E,   and  E,      by A 
k              k s 

ß      ^  0 ,  then replace 

B1 E2 

E1 B2 

Fig.   4. 1     Column elimination procedure required in order to 

keep   B    nonsingular. 
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-I 
which will be denoted by  ß   .   Again,   we have to distinguish two cases 

corresponding to (i)   and (ii)   above. 

2 
(i)   If no column is replaced in   B   ,   then by a formula similar 

to  III- (41)   we have 

(25) lZ   --   ß2[l   -   (01   -   t^W1 

where 

vz - -EV 

(ii)   If the   k      column of  B    is replaced by A   ,   then 

^2        —2      rsl       öl1r,2       r-2      —2,      1 
B      =    B     + [Ö     -   Ö  ]E     +  [As   -   Bk]   uk 

— 2      -2   2 
where  A     =  ß  A   .   In this case again we can first apply 

s s 

(25)   to obtain the inverse of   B     +  [$     -   Ö   ] E     and then 

—        —2 -2 
(24)   (vith  P    -  A   )   to compute  B   . s s i- r 

At this point it must be emphasized that the above computations 

are straightforward since almost all the required data have been made 

available by preceding computations.   However,   it must be noted that 

the amount of computations required by the inversion of [ I  -   (Ö     - Ö  )] 

in formula (25),   increases with the size of the set  1 ,   and,   therefore, 

the above procedure is advantageous only when  I     is small. 

From now on the decomposition method follows exactly the 

steps outlined in section 3-4.    However,   a last difficulty might arise 
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when we switch from one improvement subprogram to the other,   be- 

2  2 
cause the matrix  B    corresponding to the optimal basis  B     of sub- 

* 2 
program a(t)   of section 3-5 is not necessarily nonsingular.      If  B 

is singular,  then the first step to be taken is to find,   by column per- 

2 
mutations only,   a nonsingular   B   .   To do this we can again conven- 

iently use Sherman-Morrison's formula [III-(40)J. 

To conclude this discussion we now give a summary of the main 

2 
steps of the improvement subprogram based on the matrix A   . 

Assumption.      We start with a feasible basis   B for problem 

(11)   which has the form (14). 

Step  1.      Compute  ß     and if   . 

Step 2.      Set up the coefficient matrix of subproblem (20), 

-2 2 
Step 3.      Compate  ß     and IT    . 

Step 4.      Determine »he pwot column A   .    (If the columns 

price out nonnegative,   go to step 6. ) 

2 1 —2 —2 
Step  5.      (i)   If a     - a   ,   introduce A     into   B     and return 

9 

to step 3. 

2 1 1 
(ii)   If a     > a   ,   then determine a new  B    by using 

(24)   and go back to step 1. 

It can be proved that there exists at least one ordering of the 
columns of the basis   B  such that the matrix   B,   given by (14),   has 
the property that   B    andB    are nonsingular.   However,   at the time of 
the writing of this report it is not too clear to the author whether an 
attempt should be made to keep   B in this ideal form throughout the 
simplex steps of the decomposition method. 
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Step  6.       Optimality is reached for this improvement subpro- 

gram.   If the basic solution has not been improved 

by this subprogram,  then optimality has been reached 

for the original problem.   If it has been improved, 

2 
find a matrix   B     which is nonsingular and go to the 

improvement subprogram based on A   . 

Remark.     This algorithm can be generalized without any dif- 

ficulty to the case of N-stage problems. 
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